Controlled release of phenols from biodegradable chitosan films enriched with turmeric (Curcuma longa) extract

Authors

DOI:

https://doi.org/10.36097/rsan.v1iEspecial_1.3084

Keywords:

active packaging, antioxidant capacity, controlled release, Curcuma longa, turmeric, chitosan film

Abstract

To increase the antioxidant capacity of chitosan films, plant extracts and natural essential oils have been incorporated, due to the high concentration of phenolic compounds they possess. Turmeric (Curcuma longa), in addition to having high antimicrobial capacity, manifests a recognized antioxidant power. The objective of the present work was to evaluate the kinetic release of phenolic compounds from films made with different concentrations of chitosan (275 kDa) and hydroalcoholic extract of turmeric (75% ethanol, 5.5 mg/mL phenols). To prepare the films, chitosan was dissolved in 1% lactic acid and Tween 80 and turmeric extract were added to obtain films with 60-250 µg/g of phenols. The films were formed in molds and dried at 50 °C for 10 hours. The determination of phenols was carried out using the Folin-Ciocalteu method. The antioxidant capacity was evaluated using the ABTS•+ method. The release of phenols was studied in saline phosphate buffer, adjusting the data to the Korsmeyer-Peppas model to determine the kinetic mechanism of release. With the increase in phenolic content in the films with the same concentration of chitosan, it was observed that the antioxidant capacity increased. When the concentration of chitosan increased, with the same phenolic content, the antioxidant capacity of the films behaved antagonistically. The release of phenolic compounds from the films complied with a Fickian diffusion mechanism, except in the film of 1.5% (m/v) chitosan and 77 µg/g of phenols.

Downloads

Download data is not yet available.

References

Arya, R. K., Thapliyal, D., Sharma, J., & Verros, G. D. (2021). Glassy Polymers—Diffusion, Sorption, Ageing and Applications. Coatings, 11(9), 1049. https://doi.org/10.3390/coatings11091049

Boostani, S., & Jafari, S. M. (2021). A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends in Food Science & Technology, 109, 303-321. https://doi.org/10.1016/j.tifs.2021.01.040

De Kee, D., Liu, Q., & Hinestroza, J. (2005). Viscoelastic (Non‐Fickian) Diffusion. The Canadian Journal of Chemical Engineering, 83(6), 913-929. https://doi.org/10.1002/cjce.5450830601

El-Saadony, M. T., Yang, T., Korma, S. A., Sitohy, M., Abd El-Mageed, T. A., Selim, S., Al Jaouni, S. K., Salem, H. M., Mahmmod, Y., Soliman, S. M., Mo’men, S. A. A., Mosa, W. F. A., El-Wafai, N. A., Abou-Aly, H. E., Sitohy, B., Abd El-Hack, M. E., El-Tarabily, K. A., & Saad, A. M. (2023). Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Frontiers in Nutrition, 9, 1040259. https://doi.org/10.3389/fnut.2022.1040259

Gupta, V., Biswas, D., & Roy, S. (2022). A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. Materials, 15(17), 5899. https://doi.org/10.3390/ma15175899

Higuchi, W. I., & Higuchi, T. (1960). Theoretical Analysis of Diffusional Movement Through Heterogeneous Barriers**University of Wisconsin, S-hool of Pharmacy, hladison 6. Journal of the American Pharmaceutical Association (Scientific Ed.), 49(9), 598-606. https://doi.org/10.1002/jps.3030490910

Hisham, F., Maziati Akmal, M. H., Ahmad, F., Ahmad, K., & Samat, N. (2024). Biopolymer chitosan: Potential sources, extraction methods, and emerging applications. Ain Shams Engineering Journal, 15(2), 102424. https://doi.org/10.1016/j.asej.2023.102424

Ibáñez, M. D., & Blázquez, M. A. (2020). Curcuma longa L. Rhizome Essential Oil from Extraction to Its Agri-Food Applications. A Review. Plants, 10(1), 44. https://doi.org/10.3390/plants10010044

Jiménez-Gómez, C. P., & Cecilia, J. A. (2020). Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 25(17), 3981. https://doi.org/10.3390/molecules25173981

Kola, V., & Carvalho, I. S. (2023). Plant extracts as additives in biodegradable films and coatings in active food packaging. Food Bioscience, 54, 102860. https://doi.org/10.1016/j.fbio.2023.102860

Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25-35. https://doi.org/10.1016/0378-5173(83)90064-9

Kotra, V. S. R., Satyabanta, L., & Goswami, T. K. (2019). A critical review of analytical methods for determination of curcuminoids in turmeric. Journal of Food Science and Technology, 56(12), 5153-5166. https://doi.org/10.1007/s13197-019-03986-1

Mauro, J. C. (2021). Fick’s Laws of Diffusion. En Materials Kinetics (pp. 39-58). Elsevier. https://doi.org/10.1016/B978-0-12-823907-0.00026-1

Muñoz-Tebar, N., Pérez-Álvarez, J. A., Fernández-López, J., & Viuda-Martos, M. (2023). Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers, 15(2), 396. https://doi.org/10.3390/polym15020396

Muthu, M., Gopal, J., Chun, S., Devadoss, A. J. P., Hasan, N., & Sivanesan, I. (2021). Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants, 10(2), 228. https://doi.org/10.3390/antiox10020228

Parize, A. L. (2012). Desenvolvimento de sistemas microparticulados e de filmes a base de quitosana e corante natural cúrcuma. https://bdtd.ibict.br/vufind/Record/UFSC_e9316081fa080802f80a9c99964cf786

Portes, E., Gardrat, C., Castellan, A., & Coma, V. (2009). Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydrate Polymers, 76(4), 578-584. https://doi.org/10.1016/j.carbpol.2008.11.031

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rodríguez, D., García, M. A., De La Paz, N., Badillo, P. A., Castro, C., & Casariego, A. (2021). Effect of the Addition of Turmeric Hydroalcoholic Extract on Physicochemical Properties of Chitosan Films and Shelf Life Extension of Minimally Processed Pineapple. Journal of Packaging Technology and Research, 5(3), 185-200. https://doi.org/10.1007/s41783-021-00122-3

Shu, X., Zhu, K., & Song, W. (2001). Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. International Journal of Pharmaceutics, 212(1), 19-28. https://doi.org/10.1016/S0378-5173(00)00582-2

Slinkard, K., & Singleton, V. L. (1977). Total Phenol Analysis: Automation and Comparison with Manual Methods. American Journal of Enology and Viticulture, 28(1), 49-55. https://doi.org/10.5344/ajev.1977.28.1.49

Suwantong, O., Opanasopit, P., Ruktanonchai, U., & Supaphol, P. (2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 48(26), 7546-7557. https://doi.org/10.1016/j.polymer.2007.11.019

Torres, A., Ilabaca, E., Rojas, A., Rodríguez, F., Galotto, M. J., Guarda, A., Villegas, C., & Romero, J. (2017). Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. European Polymer Journal, 89, 195-210. https://doi.org/10.1016/j.eurpolymj.2017.01.019

Van Den Berg, R., Haenen, G. R. M. M., Van Den Berg, H., & Bast, A. (1999). Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry, 66(4), 511-517. https://doi.org/10.1016/S0308-8146(99)00089-8

Vidyalakshmi, K., Rashmi, K. N., Pramod Kumar, T. M., & Siddaramaiah. (2004). Studies on Formulation and In Vitro Evaluation of PVA/Chitosan Blend Films for Drug Delivery. Journal of Macromolecular Science, Part A, 41(10), 1115-1122. https://doi.org/10.1081/MA-200026554

Wu, H., Liu, Z., Zhang, Y., Gao, B., Li, Y., He, X., Sun, J., Choe, U., Chen, P., Blaustein, R. A., & Yu, L. (2024). Chemical Composition of Turmeric (Curcuma longa L.) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities. Foods, 13(10), 1550. https://doi.org/10.3390/foods13101550

Wyrwa, J., & Barska, A. (2017). Innovations in the food packaging market: Active packaging. European Food Research and Technology, 243(10), 1681-1692. https://doi.org/10.1007/s00217-017-2878-2

Downloads

Published

2024-08-31

How to Cite

Badillo, P. A., García, P., Rodríguez, J. L., García, M. A., & Casariego, A. (2024). Controlled release of phenols from biodegradable chitosan films enriched with turmeric (Curcuma longa) extract. Revista San Gregorio, 1(Especial_1), 82–89. https://doi.org/10.36097/rsan.v1iEspecial_1.3084

Issue

Section

ARTÍCULOS ORIGINALES