Digital pathology: A Critical Approach to Its Bioethical Implications

Authors

DOI:

https://doi.org/10.36097/rsan.v1i62.3688

Keywords:

Pathological anatomy, bioethics, digital pathology, artificial intelligence

Abstract

Digital pathology has optimized histopathological analysis, but it also demands bioethical reflection in light of the new challenges it entails. The objective of this study is to critically analyze the bioethical implications arising from the implementation of digital pathology in clinical practice, with the aim of contributing to a more ethical, safe, and patient-centered medical practice, in line with the fundamental principles of contemporary bioethics. The analysis was developed through a reflective and argumentative approach, based on a critical review of academic literature and recent regulatory documents on digital pathology and bioethics. The findings show that, although digital pathology offers significant advances in diagnostic accuracy and efficiency, its implementation raises bioethical challenges related to process transparency, data security, equitable access, and changes in the pathologist's role and responsibilities. It is concluded that the ethical integration of digital pathology requires the creation of clear regulatory frameworks in the immediate future, ongoing professional training, and a sustained commitment to contemporary bioethical principles.

Downloads

Download data is not yet available.

References

Abels, E., Pantanowitz, L., Aeffner, F., Zarella, M., Laak, J., Bui, M., Vemuri, V., Parwani, A., Gibbs, J., Agosto-Arroyo, E., Beck, A., & Kozlowski, C. (2019). Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. The Journal of Pathology, 249, 286 - 294. https://doi.org/10.1002/path.5331.

Álvarez-Gayou, J. (2003). Cómo hacer investigación cualitativa. Fundamentos y metodología. Paidós Educador. https://lc.cx/8u88j3

Asociación Médica Mundial. (2024). Declaración de Helsinki de la AMM. https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/

Ballantyne, A. (2019). Adjusting the focus: A public health ethics approach to data research. Bioethics, 33(3), 357–366. https://doi.org/10.1111/bioe.12551

Bizzego, A., Bussola, N., Chierici, M., Maggio, V., Francescatto, M., Cima, L., Cristoforetti, M., Jurman, G., & Furlanello, C. (2019). Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLOS Computational Biology, 15(3), e1006269. https://doi.org/10.1371/journal.pcbi.1006269

Beauchamp, T. L., & Childress, J. F. (2019). Principles of biomedical ethics (8th ed.). Oxford University Press. https://global.oup.com/ushe/product/principles-of-biomedical-ethics-9780190640873?cc=ec&lang=en&

Berbís, M. A., McClintock, D. S., Bychkov, A., Van der Laak, J., Pantanowitz, L., Lennerz, J. K., ... & Shen, J. (2023). Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade. EBioMedicine, 88. https://doi.org/10.1016/j.ebiom.2022.104427

Chamba Cuadros, J. (2024). Desafíos bioéticos en la formación médica en la era de la inteligencia artificial. Revista San Gregorio, 1(57), 186–198. https://doi.org/10.36097/rsan.v1i57.2557

Cucoranu, I. C., Parwani, A. V., West, A. J., Romero-Lauro, G., Nauman, K., Carter, A. B., Balis, U. J., Tuthill, M. J., & Pantanowitz, L. (2013). Privacy and security of patient data in the pathology laboratory. Journal of Pathology Informatics, 4(1), 4. https://doi.org/10.4103/2153-3539.108542

Digital Pathology Association (DPA, 2019). Synopsis of Computational Pathology Definitions, Best Practices, and Recommendations for Regulatory Guidance: A White Paper from the Digital Pathology Association. https://lc.cx/77WOSN

Dawson, H. (2022). Digital pathology – Rising to the challenge. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.888896.

European Commission. (2018). Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 (General Data Protection Regulation). Official Journal of the European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679

Feng, C. H., Deng, F., Disis, M. L., Gao, N., & Zhang, L. (2025). Towards machine learning fairness in classifying multicategory causes of deaths in colorectal or lung cancer patients. bioRxiv. https://doi.org/10.1101/2025.02.14.638368

Flick, U. (2007). Introducción a la investigación cualitativa. Ediciones Morata. https://www.torrossa.com/it/resources/an/5391309

Food and Drug Administration [FDA]. (2021). Artificial Intelligence and Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD): Action Plan. U.S. Department of Health and Human Services. https://www.fda.gov/media/145022/download

Hanna, M. G., Ardon, O., Reuter, V. E., Sirintrapun, S. J., England, C., Klimstra, D. S., & Hameed, M. R. (2022). Integrating digital pathology into clinical practice. Modern Pathology, 35(2), 152–164. https://doi.org/10.1038/s41379-021-00929-0

Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, M. del P. (2014). Metodología de la investigación (6.ª ed.). McGraw-Hill. https://lc.cx/E02D5B

Huss, R., & Coupland, S. (2023). Software‐assisted decision support in digital histopathology—Huss—2020—The Journal of Pathology—Wiley Online Library. The Journal of Pathology, 250(5), 685–692.

Jahn, S. W., Plass, M., & Moinfar, F. (2020). Digital Pathology: Advantages, Limitations and Emerging Perspectives. Journal of Clinical Medicine, 9(11), Article 11. https://doi.org/10.3390/jcm9113697

Lu, M. Y., Chen, B., Williamson, D. F., Chen, R. J., Zhao, M., Chow, A. K., ... & Mahmood, F. (2024). A multimodal generative AI copilot for human pathology. Nature, 634(8033), 466-473. https://doi.org/10.1038/s41586-024-07618-3

McGenity, C., Clarke, E. L., Jennings, C., Matthews, G., Cartlidge, C., Freduah-Agyemang, H., ... & Treanor, D. (2024). Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. npj Digital Medicine, 7(1), 11 https://doi.org/10.1038/s41746-024-01106-8

Marletta, S., Eccher, A., Martelli, F. M., Santonicco, N., Girolami, I., Scarpa, A., ... & Parwani, A. (2024). Artificial intelligence–based algorithms for the diagnosis of prostate cancer: A systematic review. American Journal of Clinical Pathology, 161(6), 526-534. https://doi.org/10.1093/ajcp/aqad182

Organización Mundial de la Salud. [OMS]. (2021, 8 de junio). WHO issues first global report on Artificial Intelligence (AI) in health and six guiding principles for its design and use. https://lc.cx/yFNb1y

Organización Mundial de la Salud. [OMS]. (2023, 16 de mayo). WHO calls for safe and ethical AI for health. https://www.who.int/news/item/16-05-2023-who-calls-for-safe-and-ethical-ai-for-health

Royal College of Pathologists [RCPath]. (2024). Best practice recommendations. The retention and storage of pathological records and specimens. https://www.rcpath.org/static/1111c528-c7ff-443d-9c3706f8acd19840/g031-draft-bpr-the-retention-and-storage-of-pathological-records-and-specimens.pdf

Subramanian, H., & Subramanian, S. (2022). Improving Diagnosis Through Digital Pathology: Proof-of-Concept Implementation Using Smart Contracts and Decentralized File Storage. Journal of Medical Internet Research, 24(3), e34207. https://doi.org/10.2196/34207

Shafi, S., & Parwani, A. V. (2023). Artificial intelligence in diagnostic pathology. Diagnostic pathology, 18(1), 109. https://link.springer.com/article/10.1186/s13000-023-01375-z

Shen, I. Z., & Zhang, L. (2025). Digital and Artificial Intelligence-based Pathology: Not for Every Laboratory–A Mini-review on the Benefits and Pitfalls of Its Implementation. Journal of Clinical and Translational Pathology, (000), 0-0. https://doi.org/10.14218/JCTP.2025.00007.

Sulaieva, O., Dudin, O., Koshyk, O., Panko, M., & Kobyliak, N. (2024). Digital pathology implementation in cancer diagnostics: towards informed decision-making. Frontiers in Digital Health, 6. https://doi.org/10.3389/fdgth.2024.1358305.

Unión Europea (2021). Propuesta de Reglamento del Parlamento Europeo y del Consejo por el que se establecen normas armonizadas en materia de Inteligencia Artificial (Ley de Inteligencia Artificial) y se modifican determinados actos legislativos de la Unión Europea. https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX%3A52021PC0206

U.S. Department of Health & Human Services. (2022). Health Insurance Portability and Accountability Act of 1996 (HIPAA). https://www.hhs.gov/hipaa/index.html

Verghese, G., Lennerz, J. K., Ruta, D., Ng, W., Thavaraj, S., Siziopikou, K. P., ... & Grigoriadis, A. (2023). Computational pathology in cancer diagnosis, prognosis, and prediction–present day and prospects. The Journal of Pathology, 260(5), 551-563. https://doi.org/10.1002/path.6163

Yaseliani, M., Noor-E-Alam, M., & Hasan, M. M. (2024). Mitigating Sociodemographic Bias in Opioid Use Disorder Prediction: Fairness-Aware Machine Learning Framework. JMIR AI, 3, e55820. https://doi.org/10.2196/55820

Zhang, D. Y., Venkat, A., Khasawneh, H., Sali, R., Zhang, V., & Pei, Z. (2024). Implementation of digital pathology and artificial intelligence in routine pathology practice. Laboratory Investigation, 102111. https://doi.org/10.1016/j.labinv.2024.102111

Published

2025-06-30

How to Cite

Arteaga Castro , Y. X., Guerrero Robles , C. M., Borroto Cruz, E. R. ., & Díaz-Contino, C. G. . (2025). Digital pathology: A Critical Approach to Its Bioethical Implications. Revista San Gregorio, 1(62), 123–130. https://doi.org/10.36097/rsan.v1i62.3688

Issue

Section

ARTÍCULOS DE POSICIÓN O REFLEXIÓN