Process-object duality in the formation of mathematical concepts: A systematic review
DOI:
https://doi.org/10.36097/rsan.v1i62.3561Keywords:
Mathematics education, mathematical models, logical thinkingAbstract
The formation of mathematical concepts requires the teacher’s specialized knowledge to interpret and establish connections between the concepts under study. The objective of this research is to analyze the process-object duality in the formation of mathematical concepts, based on the theoretical frameworks that support it and its didactic application in educational practice. A systematic review was conducted following the PRISMA protocol, covering studies published between 2019 and 2025.The analyzed studies agree that understanding mathematical concepts involves integrating both operational and structural dimensions, approaching them as processes applied to known objects as well as mathematical objects in their own right. A theoretical model for the cumulative formation of concepts was identified, and two key didactic actions are proposed: the explicit activation of procedural resources and the use of argumentation to clarify the distinction between process and object. Reflection on this duality is presented as both a theoretical and methodological perspective essential to fostering a deep, flexible, and meaningful understanding of mathematical knowledge.
Downloads
References
Amador, J. M. (2022). Mathematics teacher educator noticing: examining interpretations and evidence of students’ thinking. Journal of Mathematics Teacher Education, 25(2), 163-189. https://doi.org/10.1007/s10857-020-09483-z
Assemany, D.. (2024). Conexões Matemáticas Reveladas na Formação de Professores de Matemática. Bolema: Boletim De Educação Matemática, 38, e230122. https://doi.org/10.1590/1980-4415v38a230122
Báez, A. M., Martínez-López, Y., Pérez, O. L., & Pérez, R. (2017). Propuesta de tareas para el desarrollo del pensamiento variacional en estudiantes de ingeniería. Formación universitaria, 10(3), 93-106. http://dx.doi.org/10.4067/S0718-50062017000300010
Báez, N., Blanco, R., Heredia, W. (2022). Los problemas de optimización en el cálculo diferencial de una variable. Transformación, 18(2), 317-335. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2077-29552022000200317&lng=es&nrm=iso&tlng=es
Báez-Ureña, N., Pérez-González, O. L., & Blanco-Sánchez, R. (2018). Los registros de representación semiótica como vía de materialización de los postulados vigotskianos sobre pensamiento y lenguaje. Academia Y Virtualidad, 1(1), 16–26. https://doi.org/10.18359/ravi.2885
Bueno, S., Burgos, M., Godino, J. y Pérez, O. (2022). Significados intuitivos y formales de la integral definida en la formación de ingenieros. Revista latinoamericana de investigación en matemática educativa, 25(2), 135-168. https://doi.org/10.12802/relime.22.2521
Burgos, M., Bueno, S., Pérez, O., & Godino, J. (2021). Onto-semiotic complexity of the Definite Integral. Journal of Research in Mathematics Education, 10(1), 4-40. https://doi.org/10.17583/redimat.2021.6778
Castro-Superfine, A., Prasad, P. V., Welder, R. M., Olanoff, D. y Eubanks-Turner, C. (2020). Exploring mathematical knowledge for teaching teachers: supporting prospective elementary teachers’ relearning of mathematics. The Mathematics Enthusiast, 17(2 y 3), 367-402. https://scholarworks.umt.edu/tme/vol17/iss2/3/
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–126). Springer. https://doi.org/10.1007/0-306-47203-1_7
Faila, F., & Setiawan, B. (2025). Introducing Math Concepts At An Early Age: Collaborative Stimulation. Journal Evaluation in Education (JEE), 6(1), 261-267. https://doi.org/10.37251/jee.v6i1.1368
Gamboa, G. d., Badillo, E., Couso, D., & Márquez, C. (2021). Connecting Mathematics and Science in Primary School STEM Education: Modeling the Population Growth of Species. Mathematics, 9(19), 2496. https://doi.org/10.3390/math9192496
Gamboa, G. G. d., Badillo, E. & Font, V. Meaning and Structure of Mathematical Connections in the Classroom. Canadian Journal of Science, Mathematics and Technology Education. 23, 241–261 (2023). https://doi.org/10.1007/s42330-023-00281-2
García-García, J., & Dolores-Flores, C. (2021). Exploring pre-university students’ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 912–936. https://doi.org/10.1080/0020739X.2020.1729429
Godino, J. D. (2022). Emergencia, estado actual y perspectivas del enfoque ontosemiótico en educación matemática. Revista Venezolana De Investigación En Educación Matemática, 2(2), 1–24. https://doi.org/10.54541/reviem.v2i2.25
Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: A “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140. https://doi.org/10.2307/749505
Gutiérrez, X. y Parraguez, M. (2021). Mecanismo mental de síntesis en el aprendizaje del triángulo de Sierpinski como totalidad. Enseñanza de las Ciencias, 39(3), 71-92. https://doi.org/10.5565/rev/ensciencias.2908
Hatisaru, V. (2023). Mathematical connections established in the teaching of functions. Teaching Mathematics and its Applications: An International Journal of the IMA, 42(3), 207–227. https://doi.org/10.1093/teamat/hrac013
Hatisaru, V., Stacey, K., & Star, J. (2024). Mathematical connections in preservice secondary mathematics teachers’ solution strategies to algebra problems. Avances de Investigación en Educación Matemática, 25(25), 33–55. https://doi.org/10.35763/aiem25.6354
Litteck, K., Rolfes, T., & Heinze, A. (2024). The structure of knowledge about the concept of derivative – a study investigating a process-object framework. International Journal of Mathematical Education in Science and Technology, 1–21. https://doi.org/10.1080/0020739X.2024.2397990
Malheiros, A. (2024). O Movimento de Práxis na Constituição de uma Concepção de Modelagem em Educação Matemática. Bolema: Boletim De Educação Matemática, 38, e240034. https://doi.org/10. 20241590/1980-4415v38a240034
Mateo, W., & Pérez, O. (2024). Formación conceptual y tecnologías digitales en el Cálculo Diferencial para Ingeniería. Varona. Revista Científico Metodológica, 79. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1992-82382024000100025&lng=es&nrm=iso&tlng=es
Pérez, O. (2020). La formación y desarrollo conceptual en el cálculo diferencial y el álgebra lineal en las carreras de ingeniería. PARADIGMA, 571-599. https://doi.org/10.37618/PARADIGMA.1011-2251.2020.p571-599.id849
Pino-Fan, L., Castro, W., & Font, V. (2023). A Macro Tool to Characterize and Develop Key Competencies for the Mathematics Teacher’ Practice. International Journal of Science and Mathematics Education, 21(5), 1407-1432. https://doi.org/10.1007/s10763-022-10301-6
Quilantán, I., & Rodríguez, F. (2024). Narrativa de profesores universitarios sobre el concepto ecuación logística: análisis teórico en APOE. RIME, 1(2), 113-127. https://doi.org/10.32735/S2810-7187202400023784
Rodríguez-Nieto, C. A., Font Moll, V., Borji, V., & Rodríguez-Vásquez, F. M. (2022). Mathematical connections from a networking of theories between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 53(9), 2364–2390. https://doi.org/10.1080/0020739X.2021.1875071
Rodríguez-Nieto, C. A., Font, V., Rodríguez-Vásquez, F. M., & Pino-Fan, L. R. (2023). Onto-semiotic analysis of one teacher’s and university students’ mathematical connections when problem-solving about launching projectile. Journal on Mathematics Education, 14(3), 563-584. http://doi.org/10.22342/jme.v14i3.pp563-584
Sanz-Ramos, S., Presentación-Muñoz, A., González-Fernández, A., Rodal, M., & Acevedo-Borrega, J. (2024). Video games are a useful didactic tool for learning history and mathematics: a systematic review. Texto Livre, 17, e52566. https://doi.org/10.1590/1983-3652.2024.52566
Sanz-Ramos, S., Presentación-Muñoz, A., González-Fernández, A., Rodal, M., & Acevedo-Borrega, J. (2024). Video games are a useful didactic tool for learning history and mathematics: a systematic review. Texto Livre, 17, e52566. https://doi.org/10.1590/1983-3652.2024.52566
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715
Sfard, A. (1994). Reification as the birth of metaphor. For the learning of mathematics, 14(1), 44-55. https://www.jstor.org/stable/40248103
Shvarts, A., Bos, R., Portero, M. & Drijvers, P. (2024). Reifying actions into artifacts: process–object duality from an embodied perspective on mathematics learning. Educ Stud Math, 117, 193–214 (2024). https://doi.org/10.1007/s10649-024-10310-y
Sitora, I; (2024). The importance of forming mathematical concepts. Multidisciplinary Journal of Science and Technology, 4(3), 912-917. https://www.mjstjournal.com/index.php/mjst/article/view/1279
Van der Aalst, W. (2023). Object-Centric Process Mining: Unraveling the Fabric of Real Processes. Mathematics, 11(12), 2691. https://doi.org/10.3390/math11122691
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Olga Lidia Pérez González, Aura Estela Pujols Báez, Ana Mercedes Báez, Rosario del Pilar Gibert Delgado

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.