Identification of parameters in ordinary differential equation systems using artificial neural networks

Authors

DOI:

https://doi.org/10.36097/rsan.v1iEspecial_2.2826

Keywords:

Numerical methods, parameter tuning, artificial neural networks, Backpropagation algorithm, Levenberg-Marquardt method

Abstract

The identification of parameters in systems of differential equations has been a complex scientific challenge, with limited traditional methods for modeling nonlinear physical phenomena and inconsistent experimental data. The objective was to compare an artificial neural network trained with Backpropagation and optimized by Levenberg-Marquardt against classical numerical methods to identify parameters in ordinary differential equations. A multilayer neural network was designed with one input, a hidden layer of 10 neurons and two outputs. The model was trained with experimental data divided into training, validation and test sets, using the Levenberg-Marquardt algorithm to fit its parameters. Accuracy was evaluated by comparing with the Runge-Kutta-based numerical method ODE45. The neural network demonstrated superior performance, achieving an accurate and less computationally complex approximation. While the ODE45 method presented good overall fits, it showed limitations at specific intervals due to spikes and discontinuities in the simulated functions. The neural network exhibited robustness in handling nonlinear dynamics, predicting with high accuracy the behavior of the system without requiring an explicit mathematical model. Its ability to recognize complex patterns with tolerable error margins consolidated it as an effective tool for dynamic systems. In conclusion, artificial neural networks were confirmed as a robust methodological alternative, allowing the modeling of dynamic nonlinear systems with simplicity, flexibility and scalability potential.

Downloads

Download data is not yet available.

References

Binu, D., & Rajakumar, B. R. (2021). Artificial Intelligence in Data Mining. Elsevier Inc. https://doi.org/10.1016/C2019-0-01255-1

Chintha, H. P., & Chatterjee, A. (2022). Identification and parameter estimation of non-polynomial forms of damping nonlinearity in dynamic systems. International Journal of Non-Linear Mechanics, 143. https://doi.org/10.1016/j.ijnonlinmec.2022.104017

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems, 2, 303-314. https://doi.org/10.1007/BF02551274

De-kui, L., & Xing-min, W. (2023). Dislocated function projective partial synchronization between dynamical systems. Alexandria Engineering Journal, 66, 919-926. https://doi.org/10.1016/j.aej.2022.10.065

Dennis, J. E., & Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and. Prentice-Hall International.

Diamessis, J. E. (1965). A new method for determining the parameters of physical systems. Proceedings of the IEEE, 53(2), 205-206. https://doi.org/10.1109/PROC.1965.3642

Erazo Yánez, C. P., & Navarrete Cedillo, G. A. (2023). Detección de pistas aéreas ilegales en imágenes digitales empleando técnicas de inteligencia artificial. Ciencia y Poder Aéreo, 18(1), 47-56. https://doi.org/10.18667/cienciaypoderaereo.758

Figueredo Ávila, G., & Ballesteros Ricauter, J. (2016). Identificación del estado de madurez de las frutas con redes neuronales artificiales, una revisión. Ciencia y Agricultura, 13(1), 117-132. http://dx.doi.org/10.19053/01228420.4811

Gonzáles-Medina, L. E., & Vázquez, R. A. (2015). Clasificación de Malware mediante Redes Neuronales Artificiales. Revista del Centro de Investigación, 11(44), 69-102. https://www.redalyc.org/articulo.oa?id=34242142004

Guo, Y., O'Brien, J., Sivakumar, M., & Jiang, G. (2022). Back-estimation of norovirus infections through wastewater-based epidemiology: A systematic review and parameter sensitivity. Water Research, 219. https://doi.org/10.1016/j.watres.2022.118610

Hari Rao, V. S., & Yadaiah, N. (2005). Parameter identification of dynamical systems. Caos, solitones y fractales, 23(4), 1137-1151. https://doi.org/10.1016/j.chaos.2003.09.047

Jovanović, A., Stevanović, A., Dobrota, N., & Teodorović, D. (2022). Ecology based network traffic control: A bee colony optimization approach. Engineering Applications of Artificial Intelligence, 115. https://doi.org/10.1016/j.engappai.2022.105262

Lastre Aleaga, A., Méndez Garcés, E., & Cordovés García, A. (2015). Sistema automatizado para la predicción de flujo de carga en subestaciones eléctricas mediante redes neuronales artificiales. Enfoque UTE, 6(3), 20-35. https://www.redalyc.org/articulo.oa?id=572260848002

Lee, J., De Brouwer, E., Hamzi, B., & Owhadi, H. (2023). Learning dynamical systems from data: A simple cross-validation perspective, Part III: Irregularly-sampled time series. Physica D: Nonlinear Phenomena, 443(133546). https://doi.org/10.1016/j.physd.2022.133546

Margaglio, E., & Uria, M. (1994). Identification of Multivariable Industrial Processes Using Neural Networks: An Application. IEEE. IEEE.

Meidani, K., & Barati Farimani, A. (2023). Identification of parametric dynamical systems using integer programming. Expert Systems with Applications, 219, 119622. https://doi.org/10.1016/j.eswa.2023.119622

Modest, M. F. (2003). Radiative Heat Transfer. Elsevier Inc. https://doi.org/10.1016/B978-0-12-503163-9.X5000-0

Raju P, E., & Terzija, V. (2023). Power system loads modeling. Encyclopedia of Electrical and Electronic Power Engineering, 186-208. https://doi.org/10.1016/B978-0-12-821204-2.00140-9

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0

Sage, A. P., & Melsa, J. L. (1971). System Identification (First Edition ed.). Academic Press: New York.

Saldarriaga, J. F. (2022). Application of an artificial neural networks for predicting the heat transfer in conical spouted bed using the Nusselt module. Heliyon, 8(11), e11611. https://doi.org/10.1016/j.heliyon.2022.e11611

Sancho Caparrini, F. (2017). Redes Neuronales: una visión superficial. Universidad de Sevilla. http://www.cs.us.es/~fsancho/?e=72

Sarmiento-Ramos, J. L. (2020). Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica. Revista UIS Ingenierías, 19(4), 1-18. https://doi.org/10.18273/revuin.v19n4-2020001

Tarigan, J., Nadia, Diedan, R., & Suryana, Y. (2017). Plate Recognition Using Backpropagation Neural Network and Genetic Algorithm. Procedia Computer Science, 116, 365-372. https://doi.org/10.1016/j.procs.2017.10.068

van Ophem, S., & Desmet, W. (2022). Physics-based sound radiation estimation from multiple speakers by combined lumped parameter and reduced-order finite element modeling. Mechanical Systems and Signal Processing, 167(Part B). https://doi.org/10.1016/j.ymssp.2021.108585

Wang, Y., Liu, J., Li, R., Suo, X., & Lu, E. (2020). Precipitation forecast of the Wujiang River Basin based on artificial bee colony algorithm and backpropagation neural network. Alexandria Engineering Journal, 59(3), 1473-1483. https://doi.org/10.1016/j.aej.2020.04.035

Yan, J., Laflamme, S., Hong, J., & Dodson, J. (2021). Online parameter estimation under non-persistent excitations for high-rate dynamic systems. Mechanical Systems and Signal Processing, 161. https://doi.org/10.1016/j.ymssp.2021.107960

Zhang, Y., Zhu, X., & Gao, J. (2021). Hidden physics model for parameter estimation of elastic wave equations. Computer Methods in Applied Mechanics and Engineering, 381. https://doi.org/10.1016/j.cma.2021.113814

Published

2025-02-15

How to Cite

Duque Aldaz, F. J. ., Rodríguez-Flores, F. R. ., & Carmona Tapia, J. . (2025). Identification of parameters in ordinary differential equation systems using artificial neural networks. Revista San Gregorio, 1(Especial_2), 15–23. https://doi.org/10.36097/rsan.v1iEspecial_2.2826

Issue

Section

ARTÍCULOS ORIGINALES