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resumen

abstract

Es una práctica común preferir R2
adj, sobre R2 para evaluar el poder de explicación de un modelo 

de regresión estadística entre los científicos sociales, especialmente para una que tiene más de 
una variable independiente. Sin embargo, esta preferencia no es ventajosa en todo momento 
porque el uso de R2

adj puede terminar en coeficientes negativos, lo que los hace no interpretables. 
Se utiliza un experimento de simulación de Monte Carlo para evaluar el comportamiento de 
estas versiones ajustadas de R2 para diferentes números de variables independientes. Se ha 
encontrado que casi toda la versión ajustada seleccionada de R2 produce coeficientes negativos.
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It is a common practice to prefer R2
adj, over R2 to assess the explainability power of a statistical 

regression model among social scientists, especially for one having more than one independent 
variables. However, this preference is not advantageous at all times because the usage of R2

adjmay 
end up in negative coefficients making them non-interpretable. a Monte Carlo simulation 
experiment is used to appraise the behavior of these adjusted versions of R2 for different numbers 
of independent variables. It has been found that almost all of the selected adjusted version of R2 

produces negative coefficients. 
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Introduction 
 

The !! statistic, when used in a regression or 
ANOVA context, is appealing because it 
summarizes how well the regression model 
explains the data in an easy-to-understand way. !! 
statistics are also useful to gauge the effect of 
changing a model. However, being an increasing 
function of k (the number of independent variables 
in the regression model), its usage to assess the 
explanatory power of a newly added independent 
variable is highly criticized. There has been a 
tendency to use its adjusted version, !!"#! , which is 
duly adjusted for the number of independent 
variables in the model, to make it usable to assess 
the explanatory power of any added independent 
variable. The adjusted version, quite popular in its 
usage is marred, however, with illogical results, 
including negative values. The current article is an 
attempt to highlight this and related issues while 
using the adjusted version of !!. 
 

Background 
 

An omnipresent feature of any regression 
analysis is to calculate and interpret its !! to 
assess its efficacy, reliability and applicability. 
For a typical linear additive regression model to 
measure a variable y, with k where (! ≥ 1) and 
given independent variables !!,!!, . . . ,!!, the mean 
value of y in a sample of size n where (! ≥ !), in 
standard symbols, is given by 

! !
= !!+!!!!
+!!!!+. . .+!!!!                              (1) 

where !! ,!! , . . . ,!! are the estimated values 
for the unknown parameters of the regression 
model, giving the partial dependencies of y upon 
these k independent variables with ! ≤ !. 

The variation in y, from its mean, given by 
!! −! !!

! , which is believed to be due to the 
given k independent variables (if the choice of 
!!,!!, . . . ,!! is true), may be decomposed into 

variation duly explained by the model, i.e. 
!! −!

!!
! , and the variation  !! −!!

!!
!  could 

not be explained by the model. Details of this 
decomposition and derivation is out of the scope 
of current writing and is available in any standard 
Statistics textbook on regression models, like 
Draper & Smith (2014); Richard B. Darlington & 
Hayes (2017); Rincon-Flores et al., (2018). 

The ratio of this explained variation to the total 
variation, may be used to assess the proportion of 
variation in y, explained by the given independent 
variable, !!,!!, . . . ,!!, and is given by 

!! −!
!!

!

!! −!!
!!

!

= 1−
!! −!!

!!
!

!! −!!
!!

!

  (2) 

This is commonly known as !! in statistical 
literature. Obviously, more the explanation, more 
is the value of !! and vice versa. In other words, 
more the value of !!, more expletive the model is 
considered to be, in explaining the variation in y. 
Similarly, one may relate the value of !! with the 
goodness of choice of k independent variables in 
the regression model. In that case, more the value 
of !! better is the researchers’ choice of 
independent variables and vice versa. As a matter 
of fact, these are the interpretations which make 
the calculation of !! an omnipresent feature of 
any regression analysis. 

Intuitively, R2 is related to the explanatory 
power of the estimated form of the regression 
model in Eq. (1). As a matter of fact, !! is a 
function of; (i) shape of the model as being linear 
or non-linear, (ii) construction of the model i.e. 
how the constituent independent variables are 
combined together, and (iii) number of 
independent variables. 

Apart from the theoretical universality of the 
concept of !!, there have been a few exceptions 
where the calculation of !! did not produce 
meaningful results. For example, Kvålseth (1985) 
wrote a cautionary note on the use of !! for an 
intercept-less regression model, especially when it 
is to be compared with intercept-present 
regression models. Nagelkerke (1991); Cox & 
Snell (1989) established that !! does not achieve 
its maxima for binary data and developed 
modified versions for such data types. Similarly, 
McCullagh (1980); Cameron & Windmeijer 
(1996) modified it for ordinal data sets. Helland 
(1987); Snyder & Lawson (1993); Carter (1979); 
Fan (2001); Thompson (1999); Yin & Fan (2001) 
established that !! always has a positive bias as 
an estimator of !!, the squared correlation 
coefficient in population, and this bias is corrected 
by using the adjusted version of the !!. Mittlböck 
& Waldhör (2000) made some adjustments to 
apply !! in Poisson regression models. 
Montomery & Morrison (1973) showed that !! is 
a positively biased estimator of the true !! and 
additionally, it does not penalize the likelihood 
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function for having additional variables. Yin & 
Fan (2001) commented on the cross-validational 
power of !! which, as per their observations, 
drops when it is applied to an independent sample 
other than from which it is obtained. Glass & 
Hopkins (1996) and Pituch & Stevens (2015) 
observed this drop and refered it to statistical bias. 
So, the additions of independent variables to a 
model often increase the value of !! even when 
the additional variables have no explanatory 
power (Cameron & Windmeijer, 1996). This 
makes the !! a weak assessor of the efficacy and 
suitability of adding any new variable. An 
adjusted version of !! is developed to address this 
shortcoming. Similarly, Mittlböck & Waldhör 
(2000) observed that for a small sample size, 

relative to the number of independent 
variables, !! may be seriously inflated and may 
need to be adjusted according to the number of 
independent variables in the model. 

To remove, at least statistically, the biases 
associated with !!, various adjustments have been 
proposed. Following is a list, adopted mainly from 
Snyder & Lawson (1993);Yin & Fan (2001) and 
Leach & Henson (2007), showing a few such 
adjustments. Academic literature splits these 
adjustments into formulas used to estimate !!; like 
Smith, Ezekiel, Wherry-1 & 2, Pratt, Olkin & 
Pratt and Claudy are developed as the sample 
estimates of !!. While rest of the formulae are 
developed to adjust !! to increase predictive 
power for cross validation purposes. 

 
Table 1. Different Adjustments made in R! 

Called as Cited in Expression 
Smith Ezekiel (1929) 1−

!
!−! (1−!

!) 
Ezekiel Ezekiel (1929) 1−

!
!−!−1(1−!

!) 
Wherry-1 Ayabe (1985);J. Stevens 

(1996);Pituch & Stevens 
(2015) 

1−
!

!−!−1(1−!
!) 

Wherry-2 Wherry (1931) 1−
!−1
!−! (1−!

!) 
Pratt Claudy (1978) 

1−
(!−3)(1−!!)
!−!−1 1+

2(1−!!)
!−!−2.3  

Olkin-Pratt Olkin, Pratt, & others 
(1958) !!−

!−2
!−!−1(1−!

!)−
2(!−3)

(!−!−1)(!−!+1)(1−!
!)! 

Claudy-1 Claudy (1978) 2!−! ! 
Claudy-2 Claudy (1978) 1−

!−1
!−!−1

!−2
!−!−2

!−1
! (1−!! 

Claudy-3 Claudy (1978) 
1−

(!−4)(1−!!)
!−!−1 1+

2(1−!!)
!−!+1  

Lord-1 Newman & others 
(1979);Uhl & Eisenberg 
(1970) 

1−
!+!+1
!−!−1(1−!

!) 

Lord-2 Newman & others 
(1979);Kennedy (1988) 1−

!+!+1
!−!−1(1−!

!)
!−1
!  

Darlington-
Stein 

Richard B Darlington 
(1968);Stein (1960) 1−

!−1
!−!−1

!−2
!−!−2

!+1
! (1−!! 

Rozeboom-1 Rozeboom (1978) 
1−

!+!
!−! (1−!! 

Rozeboom-2 Rozeboom (1981) 
!! 1+

!
!−!−2

1−!!

!!

!!

 

Browne Schmitt (1982);Yin & 
Fan (2001) 

(!−!−3)!!+!!

(!−2!−2)!!+! 

 
The expression proposed as Wherry-1, or 

Ezekiel is being implemented by popular 
statistical packages for computing !!"#!  in multiple 
regression procedures. 

There appears to be a lack of consensus in the 
literature on which method is most appropriate 
under what circumstances for adjusting the !! 
(Yin & Fan, 2001). For example, Kromrey & 

Hines (1996) suggested that Browne formula is 
superior; Huberty & Mourad (1980) equated the 
performance of formula propounded by Olkin and 
Olkin & Pratt. 

The adjustments do make the !! oblivious of 
the number of independent variables in the model, 
however, these adjustments invite other issues. 
For example, Ayabe (1985), Kennedy (1988) and  
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J. Stevens (1996) observed that the Ezekiel 
formula was wrongly refereed as the Wherry’s. 
Then researchers used these formulas without 
distinguishing them as estimators of !! or future 
sample effect estimator (for cross validation 
purposes). Barten (1962) showed that !!"#!  is also 
positively biased. Further, there are some 
combinations of n and k for which these adjusted 
versions of !! produce negative coefficients, 
which make them logically implausible and non-
Interpretable. It is attempted here in this paper to 
appraise the performance of these adjusted 
versions of !! for their logical plausibility. 
 

Methodology 
 
As Yin & Fan (2001) lament, one of the major 

limitations in appraising these coefficients is the 
non-availability of real data which satisfies 
requisite statistical conditions of data-suitability, 
e.g. normality, multicollinearity, 
homoskedasticity, auto-correlation, etc., and is 
free of confounding factors which researchers can 
not control. 

The present study is based upon a Monte Carlo 
simulation experiment to generate data which at 
one hand is based upon normal probability 
distribution, and different statistical conditions are 
satisfied, both of which are required to develop 
good regression models, as described above. As a 
matter of fact, the normality is assured by using 
Jarque & Bera (1987) test (as per the findings of 
Siddiqi (2014);Jarque (2011)), the 
multicollinearity is assured by not letting any 
variable to enter in the simulation experiment 
whose variance-inflation-factor (VIF) is greater 
than 10 (as per the suggestions of Gujarati 
(2009)), the homoskedasticity is assured by using 
robust standard errors (as per the suggestions of 
Long & Ervin (2000);Breusch & Pagan (1979)), 
the auto-correlation is controlled by not letting 
any data set enter into the experiment which 
produce a Durbin & Watson (1950) test value 
beyond the range of (1.8,2.2) (as per the 
suggestion of Gujarati (2011)). All these filtration 
and constraints are applied to make the 
comparison fair and based upon data which is not 
faulty in itself. R, version 3.5.1, with its libraries 
like normtest, lmtest, car, sandwich besides its 
default, are used for conducting this experiment. 

All the coefficients, listed above, are calculated 
for a sample of size 100, a large sample, and for 
each value of k, ranging from 1 to 80. The results 
are shown in the figure below 

 

 
Figure 1. Monte Carlo Simulation Based 

Comparison of R! and R!"#!  
 

The results of this Monte Carlo simulation 
experiment are shown in a two dimensional graph 
(shown in the figure); the horizontal axis measures 
k, in a range from 1 to 80, while the vertical axis 
measures !! and !!"#! . For each different version 
of !! as discussed in the table, a seperate line is 
drawn. There are few things which are obvious 
from this figure: 
1. !! is an increasing function of k, the number 

of independent variables in the regression 
model. In other words, for every increase in 
number of independent variables, there is a 
definite increase in !!. As a matter of fact, 
this is the biggest criticism on !!. And this is 
the reason researchers avoid using it. 

2. None of the values of !! fall below the zero 
level line, i.e. all values of !! are positive. . 

3. !!"#!  is not an increasing function in number 
of parameters. In other words, the variations 
in !!"#!  are proportional to the importance of 
the corresponding independent variables i.e. 
more important the independent variable, 
more is the change in !!"#!  and vice versa. 
So, this may be a good indicator of assessing 
the addition in the suitability of the 
regression model by adding any new 
independent variable. 

4. There exist values of !!"#!  which fall below 
the zero level line, which indicates the 
negative values for !!"#! . This seems quite 
un-natural and illogical. 

 
Concluding Remarks 

 
The use of !!is omni present for assessing and 
establishing the appropriateness and the strength 
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of the independent variables used in a regression 
model. However, its usage is usually made in 
some adjusted versions which have been derived 
for its incapacity to assess the appropriateness of 
an additional independent variable, where it has 
been seen that it always increases for an addition 
of independent variable(s) in the regression 
model. As a matter of fact, the contention is 
correct as the !! has dully been established as an 
increasing function of the independent variables, 
so it cannot capture the real increase in the 
appropriateness of the regression model upon an 
increase in the number of independent variables.  

To address this shortcoming, many 
adjustments have been presented to make it more 
representative of the appropriateness of the 
regression model, especially for making decisions 
about the inclusion, or exclusions, of independent 
variables. Interestingly, these adjustments, do 
adjust !!for this shortcoming but instill other 
issue(s). The current article attempts to highlight 
one such problem where they produce negative 
coefficient for certain values of n and k. 

A Monte Carlo simulation experiment is 
conducted to generate data which abide by all the 
requisite assumptions for a typical regression 
model, e.g. normality, multicollinearity, auto-
correlation, homoskedasticity, etc. Once the data 
is generated, coefficients for these adjusted 
versions are calculated, and so is !!, where n = 
100 and k ranges from 1 to 80. To visualize the 
dynamics of these !!"#! , for their comparison, a 
two-dimensional graph (Figure 1) with k along 
horizontal axis and their corresponding 
coefficients along vertical axis is used.  

The graph explicitly shows the increasing 
nature of !! and the negative coefficients for 
almost all of its the adjusted versions. A negative 
value for a squared entity is illogical and non-
interpretable. And, this is what makes their usage, 
at least mathematically, “objectionable”. 

Such results prohibit the rampant usage of 
these adjusted versions of !!. This article only 
speculates upon the observation that usage of  
!!"#!  gives negative values. It should be in no way, 
taken as a relative comparison between the values 
obtained by !! and  !!"#! , it only highlights the 
fact that it gives negative values (which is 
considered mathematically illogical), hence it is 
not recommendable. Secondly this study is based 
on a larger sample i.e. n=100. The results may 
vary when smaller size sample is used. !! value 
happens to be 0.4 but result may be different for 
regression models having !! closer to 1. 
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